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Complex cognitive activities, such as analytical reason-
ing, problem solving, and sense making, are often per-
formed through the mediation of interactive computa-
tional tools. Examples include visual analytics, decision 
support, and educational tools. Through interaction with 
visual representations of information at the visual inter-
face of these tools, a joint, coordinated cognitive system 
is formed. This partnership results in a number of rela-
tional properties—those depending on both humans and 
tools—that researchers and designers must be aware of 
if such tools are to effectively support the performance 
of complex cognitive activities. This paper presents 10 
properties of interactive visual representations that are 
essential, relational, and whose values can be adjusted 
through interaction. By adjusting the values of these 
properties, better coordination between humans and 
tools can be effected, leading to higher-quality perfor-
mance of complex cognitive activities. This paper exam-
ines how the values of these properties affect cognitive 
processing and visual reasoning, and demonstrates the 
necessity of making their values adjustable—all of which 
is situated within a broader theoretical framework con-
cerned with human-information interaction in complex 
cognitive activities. This framework can facilitate sys-
tematic research, design, and evaluation in numerous 
fields including information visualization, health infor-
matics, visual analytics, and educational technology. 
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Introduction 

Scientists, analysts, decision makers, doctors, and other 
knowledge workers are constantly engaged in activities that 
involve complex cognition (Sternberg & Ben-Zeev, 2001). 
Such activities include, among others, decision making, 
problem solving, sense making, planning, analytical reason-
ing, and learning. To emphasize both the active and the 
complex nature of such activities, they can be referred to as 
complex cognitive activities (see, e.g., Baddeley, 2007; 
Sedig & Parsons, 2013). Two essential characteristics of 
complex cognitive activities can be identified: 1) the use of 
complex psychological processes—such activities rely on 
the combination and interaction of more elementary process-
es such as perception and memory; and 2) the presence of 
complex conditions—the environment may be dynamic, the 
outcome of actions may be uncertain, objects or states may 
be only partially observable, and/or many variables may 
exhibit a high level of interdependence (Knauff & Wolf, 
2010; Schmid, Ragni, Gonzalez, &  Funke, 2011). Complex 
cognitive activities can be contrasted with simple cognitive 
activities. Examples of simple cognitive activities include 
perceiving and recognizing colors and reading and under-
standing words in a book. Examples of complex cognitive 
activities, on the other hand, are making sense of global cli-
mate change patterns, analyzing genomic data to discover 
unknown patterns, and making decisions about resource al-
location and organizational strategies.  

The performance of complex cognitive activities involves 
active and goal-directed information processing by human 
beings (Funke, 2010). This information processing consists 
of humans using and working with some given information 
to derive new information (Knauff & Wolf, 2010). That is, 
humans interact with information to support their infor-
mation-intensive thinking processes that are focused on solv-
ing problems, making decisions, and performing other com-
plex cognitive activities. In this paper, we refer to humans 



who interact with information to perform complex cognitive 
activities as actors. Using this term has a number of benefits 
over using other terms that are often used such as users, cli-
ents, or patrons. Such benefits include placing emphasis on 
the activity aspect of human-information interaction; situat-
ing interaction with information in the context of the per-
formance of activities; and shifting the focus from the sys-
tem to the person or people that are using the system (Fidel, 
2012).   

Nowadays, actors typically use interactive computational 
tools to mediate their interaction with information and to 
support their complex cognitive activities. Examples of such 
tools include information visualization, personal information 
management, visual analytics, knowledge discovery, and 
educational tools. This paper is concerned with all such tools 
that mediate human-information interaction (HII) and sup-
port complex cognitive activities. As these tools have differ-
ent meanings and connotations depending on the context and 
discipline in which they are used, we will use the umbrella 
term Cognitive Activity Support Tools (CASTs) to encom-
pass all such tools and to emphasize their role in supporting 
the performance of complex cognitive activities. CASTs 
have many components, including displays, sensors, and 
other input and output devices, storage mechanisms, algo-
rithms for processing and manipulating information, and 
interfaces that connect to humans or to other machines. The 
component that is of primary concern in this paper is their 
visually perceptible information interface that serves as a 
meeting point between information and the human visual 
system. Such interfaces communicate and provide access to 
information through visual representations (VRs). Research 
in cognitive science has repeatedly demonstrated the funda-
mental role that VRs play in the performance of complex 
cognitive activities (see Kirsh, 2010; Zhang & Patel, 2006). 
For instance, research has demonstrated that certain types of 
VRs are more appropriate for some tasks and activities than 
for others (Peterson, 1996; Stenning & Oberlander, 1995).  

Although not yet a prevalent endeavor in most disci-
plines concerned with VRs, such as information visualiza-
tion and visual analytics, researchers in related fields have 
long been concerned with ontological analysis of their do-
mains of research—i.e., analysis of their nature and struc-
ture, which involves, among other things, identifying con-
cepts, categories, and entities, as well as their properties and 
relationships; conceptual modeling; clarifying subtle distinc-
tions in terminology; distinguishing between essential and 
non-essential, abstract and concrete, and other ontological 
dichotomies; and constructing taxonomies to organize such 
entities, properties, concepts, and so on. For instance, re-
searchers concerned with designing, evaluating, and model-
ing information systems have been aware of the need to 
identify and characterize ontological properties, and to gen-
erally engage in ontological analysis of their domains, for at 
least two decades (see, e.g., Wand & Weber, 1990). Scholars 
concerned with artificial intelligence and knowledge repre-
sentation have also engaged in such research (e.g., Guarino, 

1995). In a similar manner, the information systems and in-
formation science communities have long recognized and 
emphasized the importance of metadata (i.e., an ontological 
aspect of the domain) in conceptualization, design, evalua-
tion, and in scientific discovery and communication. For 
example, Hert, Denn, Gillman, Oh, Pattuelli, and Hernández 
(2007) stress the integral role of metadata in conceptualiza-
tion and design of information systems. While examining the 
importance of metadata in scientific communication and 
discovery, Willis, Greenberg, and White (2012) argue that 
discipline-specific metadata schemes have contributed to 
establishing artificial barriers to data discovery and reuse 
across disciplines, and, furthermore, such schemes interfere 
with interdisciplinary scientific progress. Just as the devel-
opment of metadata schemes and the process of ontological 
analysis are of vital importance for research, design, evalua-
tion, and communication in some well-established disci-
plines, ontological analysis of the domain that encompasses 
the intersection of humans, information, VRs, interaction, 
computational tools, and complex cognitive activities is nec-
essary if we are to develop a more scientific approach to this 
area of research—a need suggested by multiple researchers 
(e.g., Green & Fisher, 2011; Thomas & Cook, 2005; Meyer 
et al., 2010). Moreover, to design and evaluate CASTs in a 
systematic fashion, models and frameworks that are based 
on such analyses are needed. Such models and frameworks 
bring order and coherence to the landscape of relevant con-
cepts, constructs, hypotheses, and research findings, scaffold 
thinking for design and evaluation, and can enable consistent 
communication for interdisciplinary research. 

One aspect of ontological analysis is concerned with 
identifying entities and properties that exist within a domain 
and, furthermore, determining whether such properties are 
essential or non-essential, intrinsic or relational (i.e., extrin-
sic). In this paper, we are mostly concerned with actors and 
VRs, rather than with other components of CASTs. More 
specifically, we are concerned with a particular subset of 
VRs—interactive VRs. We analyze interactive VRs to iden-
tify their essential properties that influence cognitive pro-
cesses and visual reasoning. By focusing on essential proper-
ties, we are concerned with properties of interactive VRs that 
are present in all instances. In other words, all interactive 
VRs, regardless of the context in which they are instantiated, 
have such properties. In addition, we are not concerned with 
all essential properties of interactive VRs, but only those that 
influence cognitive processes and visual reasoning and 
whose values can be adjusted by actors through interaction. 
While all instances of a category have the same essential 
properties, it is the values of such properties that are varia-
ble. For example, the category of ‘human’ has certain essen-
tial properties, one of which is height. All instances of this 
category (i.e., all humans) have this property; however, in 
each instance the value of the height property is variable 
(e.g., 5 feet, 6 feet, and so on). In a similar manner, the cate-
gory of ‘interactive VR’ has certain essential properties, 
each of which has a value. These values do not have to be 



quantitative, but can be qualitative or categorical as well. In 
any instance of this category (i.e., any VR) these properties 
are existent, and their values influence cognitive processes 
and visual reasoning of the actor. In the case of interactive 
VRs, the values can be adjusted. Because the ideal values in 
any instance are dependent on the actor (e.g., his or her cog-
nitive abilities, preferences, and prior knowledge and experi-
ence), the complexity of the activity, and other contextual 
factors, these essential properties are also relational. That is, 
their ideal values (i.e., those best suited to a task or activity) 
do not depend only on VRs, but depend on both VRs and 
actors. To summarize, we are concerned with properties of 
interactive VRs that influence cognitive processes and are 
present in all instances (they are essential); the ideal values 
of these properties are dependent on both the actor and 
CAST (they are relational); and the values of these proper-
ties can be adjusted by the actor through interaction. To pro-
vide an example, density is a property of interactive VRs 
that is present in all instances, whether in the context of de-
cision support and visual analytics, analytical reasoning and 
intelligence analysis, or any other combination of actors, 
activities, and contexts. In any given VR, the value of the 
density property exists along a continuum from low to high 
(e.g., a VR may have a very high degree of density with 
thousands of encoded entities, or a low degree with only a 
few entities). This value influences an actor’s cognitive pro-
cessing and visual reasoning with the encoded information 
(e.g., too many entities can result in perceptual overload and 
errors in reasoning). The actors should thus be able to adjust 
the value (e.g., decrease it so a lower number of entities are 
encoded). This last aspect is what makes the focus of this 
paper human-centered. Such an approach is indeed the core 
of human-centered informatics—researching, designing, and 
evaluating according to human cognitive and perceptual 
characteristics, being flexible rather than rigid, being con-
text-sensitive and adaptable to human needs, and measuring 
effectiveness in terms of human rather than system benefits 
(Kulik, Kosara, Urquiza, & Wassink, 2007; Zhang, Patel, 
Johnson, Smith, & Malin, 2002). In this paper, 10 of these 
previously described properties are identified, characterized, 
and examined in the context of their cognitive influences and 
adjustment possibilities. 

Although interactive VRs have numerous advantages 
over static VRs, previous research has shown that simply 
making VRs interactive does not ensure that CASTs will 
effectively support the performance of complex cognitive 
activities; rather, an additional necessary concern is the qual-
ity of interaction—also referred to as interactivity (e.g., see 
Sedig, Klawe, & Westrom, 2001; Liang, Parsons, Wu, & 
Sedig, 2010). Sedig, Parsons, Dittmer, & Haworth (2013) 
have recently developed a framework that explicates many 
of the elements and factors that contribute to the quality of 
interaction between an actor and a visualization-based 
CAST, and which must be considered to ensure proper and 
optimal performance of complex cognitive activities. One of 
these identified factors is concerned with the range and 

availability of options that allow actors to adjust properties 
of the CAST to suit their needs and goals. In this paper we 
address this one aspect of interactivity partially (as we are 
concerned with only a subset of all such adjustable proper-
ties). This paper is part of a larger research plan aimed at 
establishing a comprehensive framework that can bring sys-
tematicity to research, design, and evaluation of CASTs. 
This comprehensive framework is named EDIFICE (Episte-
mology and Design of human-InFormation Interaction in 
complex Cognitive activitiEs). This paper presents a frame-
work that complements other aspects of the EDIFICE 
framework, and can thus be considered a component of 
EDIFICE. We will henceforth refer to as EDIFICE-PVR, 
where PVR stands for Properties of Visual Representations. 
Although EDIFICE-PVR can be used as an independent 
framework, it is most useful when combined with other 
components of EDIFICE. 

The rest of the paper is organized into five main sections 
as follows. The first two sections provide some conceptual 
and theoretical foundations by examining the concept of 
interactivity, the emergent nature of complex cognitive ac-
tivities, the structure and process of CAST-mediated HII, 
and the role of interactive VRs in the performance of com-
plex cognitive activities. The third section briefly examines 
some related work. The fourth section presents EDIFICE-
PVR: its rationale and development, and a detailed treatment 
of each property in terms of its cognitive and perceptual in-
fluences. The fourth section provides an integrated scenario 
to demonstrate the utility of EDIFICE-PVR for systematic 
design and evaluation of CASTs. Finally, the fifth section 
provides a summary and discusses some potential future 
research directions.  
 
Interactivity: Quality of Interaction 

The concept of interactivity lacks a coherent and com-
monly agreed upon characterization (see Aigner, 2011; 
Sedig, Parsons, & Babanski, 2012; Sedig et al., 2013). One 
of the problems in discussing interactivity is that the terms 
‘interaction’ and ‘interactivity’ are often used loosely and 
interchangeably. Although these two terms are similar, they 
are conceptually distinct. In this paper, interaction refers to 
the dialogue that takes place between an actor and infor-
mation through the mediation of a CAST. Interactivity, how-
ever, by adding the suffix ‘ity’, denotes the quality of the 
interaction. This distinction is important—a tool may be 
interactive, but if the quality of interaction is not good, it 
will not effectively support complex cognitive activities. For 
example, an actor can interact with a VR of a chemical com-
pound to make sense of a chemical reaction. As such a pro-
cess involves a transformation from one state to another, it 
may take place in many different ways—it may be instanta-
neous or it may take place gradually; it may require one 
mouse click or may require a chain of events; it may or may 
not allow the actor to control certain parameters of the trans-
formation; and so on. In each case, the interaction is the 
same: the actor is acting upon a VR to effect a transfor-



mation. The quality of the interaction, however, is what 
changes.  

Another difficulty for discussing interactivity is that it is 
a complex and emergent construct. It is a construct in the 
sense that it is an abstraction for which there is no single, 
directly observable referent. It is complex in the sense that 
the factors that contribute to the construct are many, are dy-
namic, and are themselves complex (e.g., the human cogni-
tive and perceptual system). Furthermore, it is emergent in 
the sense that it is the result of the interaction of multiple 
components and cannot be reduced to the properties of the 
components themselves. While performing complex cogni-
tive activities, a connection is formed between an actor and a 
CAST that results in a joint, coordinated cognitive system 
(Brey, 2005; Kirsh, 2005; Parsons & Sedig, 2013b). Within 
this cognitive system, there is continuous and reciprocal 
causal influence between the actor and the CAST (Clark, 
1998; Kirsh, 2005). Such a reciprocal causal influence gives 
rise to properties that are not reducible to its components in 
isolation. In other words, interactivity is an emergent prop-
erty of the cognitive system that is created by an interactive 
coupling between an actor and a CAST.  

The factors that contribute to the interactivity construct 
are many, and they can be examined at different levels of 
abstraction and granularity. At the micro-level, the manner 
in which the action and reaction components of a single in-
teraction are operationalized affects the quality of interaction 
(see Liang et al., 2010; Sedig et al., 2013). At the macro-
level, where multiple interactions are put together to perform 
tasks and activities, there are a number of factors that affect 
the quality of interaction. These include: the number and 
diversity of interactions that are available to the actor; the 
harmonious and reciprocal relationships among interactions; 
the appropriateness of interactions for given VRs, tasks and 
activities, and characteristics of actors; the types of interac-
tions available to actors—whether interactions allow actors 
to access information, annotate information, modify existing 
information, insert new information, or any combination 
thereof; and, the range and availability of adjustability op-
tions that allow actors to adjust properties of the CAST to 
suit their needs and goals (see Sedig et al., 2013, for a more 
detailed examination of these micro- and macro-level con-
siderations). The final consideration—regarding the range 
and availability of adjustability options—is the issue with 
which this paper is concerned.  

An analogy may facilitate thinking about how adjusting 
the values of properties can affect the quality of interaction. 
Two people may interact with one another through verbal 
communication. When one person speaks, information is 
being communicated through speech—an auditory represen-
tation of information. The auditory information representa-
tion has a number of properties—volume, speed, pitch, clari-
ty, language, and so on. These properties have values: vol-
ume can be high, low, or in between; clarity can be good, 
bad, or in between; language can be English, French, or 
some other language; and so on. Additionally, in this context 

these properties should be conceptualized as relational, as 
their ideal values are dependent on the listener. Although 
interaction may occur between the participants, it is the qual-
ity of the interaction that is critically important in terms of 
the efficacy of communication. A speaker may be mumbling 
or speaking quietly, for example, which would negatively 
affect the comprehension of the listener. In other words, the 
values of the volume and clarity properties are not suitable. 
It is possible, through extended effort and concentration, for 
the listener to comprehend the speaker. However, if the lis-
tener is given the ability to adjust some of the values of the 
properties—by requesting that the speaker speak louder and 
more clearly—the quality of the interaction is affected, and 
the efficacy of the communication is increased. Thus the 
interaction stays the same, but the interactivity changes. By 
giving control to the listener she can adjust the values of the 
properties to suit her contextual needs and facilitate compre-
hension.   

While using CASTs, there is also a dialogue that is taking 
place. As previously mentioned, the efficacy of tools in sup-
porting cognitive activities depends in part on the quality of 
this dialogue. In the context of this paper, this dialogue takes 
place through visual, rather than auditory, representations of 
information. This paper identifies ten properties of VRs that 
affect the performance of complex cognitive activities: ap-
pearance, complexity, configuration, density, dynamism, 
fidelity, fragmentation, interiority, scope, and type. Each of 
these properties has a value: the value of complexity may be 
high, low, or in between; the value of dynamism may be 
high, low, or in between; the value of type may be a tree 
diagram, a plot, or some other representational form; and so 
on. Just as the context in the situation described above is 
important—whether the conversation is taking place in a 
noisy environment, for example—and has an effect on the 
ideal values of the properties, so too the context in which 
complex cognitive activities take place is important. 
 
Human-Information Interaction in Complex 
Cognitive Activities 

Researchers interested in HII investigate the relationships 
between humans and information, rather than those between 
humans and technology. HII is a broad area of research, and 
scholars are interested in many different aspects of HII, in-
cluding those related to information retrieval, foraging, shar-
ing, and seeking; information visualization; personal infor-
mation management; medical, health, and bio informatics; 
human-computer interaction; and information systems. 
Therefore, the focus of HII research varies according to the 
dominant discipline in which researchers are situated, and 
their pertinent research challenges, domains of application, 
methodologies, and underlying theoretical frameworks.  
 
Complex Cognitive Activities as Emergent Phenomena 

One of the challenges for HII researchers is to develop 
models and frameworks that characterize and explicate com-
plex cognitive activities and how they are performed through 



the mediation of CASTs. Considering the complexity of the 
human cognitive system, the complexity of the activities, as 
well as the sophistication of modern computational tools, 
addressing such a challenge is a formidable endeavor.  Other 
components of the EDIFICE framework have begun to ad-
dress aspects of this research challenge. For instance, Sedig 
and Parsons (2013) have identified and characterized a num-
ber of complex cognitive activities, developed a model of 
how such activities emerge over time through interaction 
that occurs at multiple levels of granularity, and have devel-
oped a model of the structure and process of HII during the 
performance of complex cognitive activities (see also Par-
sons & Sedig, 2013b). As was discussed in the previous sec-
tion, Sedig et al., (2013) have further characterized the struc-
ture of HII and have identified a number of micro- and mac-
ro-level elements and factors that contribute to overall inter-
activity when using interactive tools to support complex 
cognitive activities. To situate EDIFICE-PVR, these other 
components of the EDIFICE framework can be briefly 
summarized as follows.  

Complex cognitive activities are hierarchical, embedded, 
and emergent. Activities typically include sub-activities, 
which include tasks and sub-tasks, which include actions and 
micro-level physical events such as mouse clicks and ges-
tures. Complex cognitive activities emerge over time from 
the performance of micro-level events, actions, tasks, and 
sub-activities. For example, consider the use of a CAST to 
support making sense of a large body of information regard-
ing a terrorist attack. In order to make sense of the structure 
and features of the information, an actor may perform a 
number of tasks, such as scanning phone records for specific 
dates or locations; identifying prominent individuals and 
their relationships; browsing a collection of photographs; 
and categorizing emails and phone calls. Each task may in-
volve the performance of any number of lower-level actions. 
For instance, to identify prominent individuals and their rela-
tionships, the actor might filter names based on dates or oth-
er criteria, annotate photographs or emails to add meta-
information, rearrange a list of names and dates, or translate 
information from a table to a node-link diagram. To com-
plete any one of these actions, a number of micro-level 
events such as mouse clicks, finger swipes, or keystrokes 
may be required. Thus, a sequence of events, actions, sub-
tasks, tasks, and sub-activities results in a trajectory through 
the cognitive activity space that eventually leads to the ac-
complishment of an overall activity. During the performance 
of such activities, actors deploy general, high-level strategies 
that include the performance of many tasks and low-level 
actions that help actors alter their information environment, 
and, as a result, transform and support their cognitive pro-
cesses to gradually achieve the ultimate goals of an activity 
(Sedig & Parsons, 2013). 

 
Structure and Process of Human-Information Interaction in 
Complex Cognitive Activities 

In the context of using CASTs that mediate human-

information discourse, there are many components that re-
quire consideration. These include, among others, the infor-
mation, the internal workings of the CAST, the representa-
tion of information at the interface of the CAST, characteris-
tics of the actor, and the reciprocal action that takes place 
between the actor and the represented information. Moreo-
ver, if a CAST is to fulfill its intended function, the relation-
ships between each of these aforementioned components 
must be considered carefully. To facilitate conceptualization 
for research and design, we have, in previous work (see 
Sedig, Parsons, & Babanski, 2012), proposed a categoriza-
tion of this discourse into five broad spaces: 1) information 
space, 2) computing space, 3) representation space, 4) inter-
action space, and 5) mental space.  

Information space refers to the body of information 
with which an actor is interacting to perform an activity. The 
types of complex activities in which actors engage often 
require access to information from multiple domains. For 
example, an analyst may require demographic, historic, fi-
nancial, and geographic information to make decisions re-
garding the distribution of resources. As CASTs can main-
tain and provide access to all kinds of information, actors 
can interact with information that is combined and blended 
from multiple sources and environments. Thus, the term in-
formation space refers to a body of information that contains 
any combination of entities, properties, or relationships—
whether concrete, abstract, large, small, visible, or invisible, 
and from any possible combination of domains—with which 
actors access and interact through the mediation of CASTs 
to perform cognitive activities. Henceforth, for the sake of 
simplicity, the term ‘information item’ will be used to refer 
to any constituent of an information space, such as an entity, 
component, structure, property, relationship, or process. 
Many researchers limit their scope to either concrete infor-
mation sources (e.g., as in scientific visualization) or abstract 
information sources (e.g., as in information visualization). 
The high-level approach of EDIFICE-PVR, however, is ap-
plicable to all sources of information. Cognitive and percep-
tual processes that are influenced by the properties of VRs 
are consistent regardless of the source of information. Con-
sequently, EDIFICE-PVR is applicable to a wide variety of 
domains, including business, medicine, mathematics, eco-
nomics, biology, history, physics, sociology, and library 
science. Computing space refers to the internal portion of the 
CAST, where information items are digitally represented, 
stored, and operated upon. Data cleaning, filtering, normali-
zation, and other pre-processing procedures take place in 
computing space. Moreover, data mining and knowledge 
discovery techniques allow CASTs to assume an active in-
formation-processing role and become active participants in 
information processing for complex cognitive activities (see 
Parsons & Sedig, 2013b for more on this issue). Representa-
tion space refers to the space in which information is repre-
sented in visual form at the interface of a CAST. This space 
is comprised of VRs of items from the information space, as 
well as representations of action possibilities, controls, la-



bels, and other elements that are not part of the information 
space. As digital information is not directly visible to actors, 
it is only through the representation space that actors access, 
interact with, modify, or insert information into the underly-
ing information space. Research and design of representation 
space is concerned with, among other things, how infor-
mation can be organized and displayed in visual forms, how 
representation and encoding techniques influence the per-
formance of tasks and activities, and how VRs affect actors’ 
perceptual and cognitive processing of information. Interac-
tion space refers to the space in which actions are performed 
and subsequent reactions occur. This space is where there is 
a back-and-forth flow of information between an actor and a 
CAST. Research and design of interaction space is con-
cerned with what actions can and should be made available 
to actors to operate upon VRs, the utility of such actions in 
the context of performing complex cognitive activities, and 
how actions and their reactions should be operationalized. 
Mental space refers to the space in which internal mental 
events and operations take place (e.g., apprehension, induc-
tion, deduction, memory encoding, memory storage, 
memory retrieval, judgment, classification, and categoriza-
tion).  

These spaces do not exist or operate in isolation. When 
an actor performs complex cognitive activities, the actor and 
CAST form a joint, coordinated cognitive system across 
which cognitive processing is distributed (see Clark, 2008; 
Kirsh, 2005; Sedig & Parsons, 2013). That is, some of the 
processing takes place in mental space, some is offloaded 
onto VRs and computational processes, and some takes 
place through interactions with VRs. A principled under-
standing of how to best distribute the load of information 
processing for different activities and actors is still an open 
research problem (see Parsons & Sedig, 2013b for further 
discussion of this issue). Figure 1 depicts the structure and 
process of CAST-mediated human-information interaction. 
Interaction is depicted as a cyclical process in which an actor 
perceives VRs, performs some mental operations, acts upon 
VRs, a reaction occurs (visibly in representation space 
and/or hidden within computing space), and then the cycle 
repeats itself.  
 
Role of Interactive VRs in Performing Complex Cognitive 
Activities 

By organizing and giving form to information, VRs give 
perceptual access to an underlying information space in such 
a way that there is a unity of meaning between the VR and 
the information—in other words, from the perspective of the 
actor, the VR is the information (Cole & Derry, 2005; Peter-
son, 1996; Zhang & Norman, 1994). Consequently, the de-
sign and use of VRs in CASTs requires careful considera-
tion. When using VRs to assist with cognitive activities, an 
actor’s external cognition is engaged (Scaife & Rogers, 
1996). The partnership that is formed between internal men-
tal processes and external representations provides a number 
of benefits for performing complex cognitive activities (see  

 
FIG. 1. The structure and process of CAST-mediated human-
information interaction. 
 
 
Kirsh, 2010; Sedig et al., 2013 for a discussion of some of 
these benefits). However, when VRs are static, actors may 
be forced to exert a great deal of mental effort in order to 
reason and think about the information. Complex cognitive 
activities take place over a span of time, where internal men-
tal processes (e.g., categorizations, abstractions, memory 
encodings, and comparisons) are dynamic and involve con-
stant assimilation and reorganization of information. Static 
representations do not readily share in and distribute this 
temporal and dynamic processing of information, and thus 
force more of the processing load onto internal mental pro-
cesses. This lack of operational harmony creates a distance 
between the mental space of an actor and representation 
space. With the addition of interaction, however, this dis-
tance can potentially be bridged. If interaction is operational-
ized properly, a strong coupling can be formed between an 
actor and a CAST that provides better support for perform-
ing cognitive activities (see Brey, 2005; Clark, 1998; Hoc, 
2005; Kirsh, 1997, 2005, 2010; Sedig et al., 2013). 

When CASTs are designed in a human-centered fashion, 
actors can dynamically adapt VRs to fit their cognitive and 
contextual needs. As a VR typically encodes only a subset of 
items from an information space, static VRs can force actors 
to make extrapolations regarding the items that are latent. In 
addition, with static VRs, the values of their properties are 
not adjustable, which can lead to an unnecessary burden be-
ing placed on actors’ perceptual and cognitive faculties. 
When VRs are interactive, on the other hand, actors can flu-
idly and repeatedly act upon VRs to adjust them to best inte-
grate them into their cognitive processing of the information. 
Consider Figure 2, which depicts a portion of an activity. 
The VRs at time t encode some items from the information 
space. The actor perceives the encoded information and per-
forms an action (An). The reaction (Rn) results in the new 



state of the VRs (at time t+1), which encodes new items 
from the information space. The actor perceives the result 
(i.e., VRt+1, as well as the process of transformation from 
VRst to VRst+1). Based on updated goals and strategies, the 
actor performs another action (An+1), and a reaction (Rn+1) 
ensues. The VRs at time t+2 now encode more items from 
the information space. In addition to accessing and working 
with items from the information space, such actions can ad-
just the values of the properties of the VRs. For instance, the 
appearance and density values of the VRs at time t+1 may 
not be appropriate for a task that an actor is trying to per-
form. By acting upon the VRs, the actor may adjust them to 
a more appropriate value, resulting in the VRs at time t+2. If 
a CAST is designed properly, this process of reciprocal ac-
tion creates an operational harmony between mental space 
and the other spaces that increases interactivity and provides 
better support for the performance of complex cognitive ac-
tivities.  

 

 
FIG. 2. The performance of a cognitive activity through infor-
mation discourse that is mediated by a CAST 
 
 
Related Work 

Because of the inherently multidisciplinary nature of HII, 
researchers approach its study from different disciplines and 
areas of interest, such as those mentioned in the previous 
section. Only a small subset of such research, however, has 
taken a human-centered approach to HII at the intersection 
of complex cognition, human activities, and interactive tech-
nologies. Stasko and colleagues have been working on in-
corporating current theories and models from cognitive sci-
ence research into information visualization research. For 
example, Liu, Nersessian, & Stasko (2008) have examined 

the use of distributed cognition as a theoretical framework 
for information visualization. Pike, Stasko, Chang, and 
O’Connell (2009) have strongly emphasized the importance 
of interaction in human insight and in the development of 
information systems. In addition, Liu & Stasko (2010) have 
developed a framework that combines research on mental 
models and reasoning with interaction and visualization, and 
have emphasized the primacy of the interplay between inter-
nal and external representations in the emergence of cogni-
tive processes—an important area of research that requires 
much further examination. Sedig and colleagues have been 
investigating the role of interaction with VRs in supporting 
cognitive tasks and activities in the context of concept learn-
ing and distributed cognition (Sedig et al., 2001; Liang & 
Sedig, 2010a), visual and spatial reasoning (Sedig, Rowhani, 
Morey, & Liang, 2003; Liang & Sedig, 2010b), formation of 
cognitive maps (Sedig, Rowhani, & Liang, 2005), and other 
considerations for HII in complex cognitive activities (e.g., 
Fast & Sedig, 2005, 2011; Liang et al., 2010; Sedig & Liang, 
2008; Sedig & Parsons, 2013; Sedig et al., 2013). Arias-
Hernandez, Green, and Fisher (2012) have recently contrib-
uted a useful critique of the use of models of cognition in 
visual analytic research, and provide a loose framework for 
thinking about the material basis of cognition in visual ana-
lytics. Other contributions that have some general applica-
tion to this area include Fidel’s (2012) recent work on hu-
man-information interaction and cognitive work analysis, 
Kaptelinin and Nardi’s (2012) recent work on activity theory 
in HCI, and Marchionini’s (2008, 2010) work on infor-
mation concepts and human-information interaction.  

While more attention in general has been given to HII in 
recent years, existing work does not focus strongly on the 
particulars of how interactive VRs affect higher-order cogni-
tive processes and complex cognitive activities. Although 
some existing research has examined how features of VRs 
influence human cognition, it has mostly been in the context 
of low-level perceptual and cognitive effects (e.g., Bertin, 
1967; Tukey, 1977; Cleveland & McGill, 1984; Mackinlay, 
1986; MacEachren, 1995; Nowell, 1997; Ware, 2008, 2012). 
Research that has examined some higher-level cognitive 
effects of VRs (e.g., Baker, Jones, & Burkman, 2009; 
Cheng, Lowe, & Scaife, 2001; Huang, Eades, & Hong, 
2009; Shimojima, 1996; Zhang & Norman, 1994) has not 
attempted to systematically identify and characterize the 
essential properties of interactive VRs and describe how or 
why their values depend on both actors and CASTs. The 
need for such a research effort has been previously discussed 
and will not be repeated here. Following the next section, 
which presents the EDIFICE-PVR framework, there will be 
a more detailed comparison with some existing work in or-
der to demonstrate the utility and unique contribution of 
EDIFICE-PVR. 

 
 

 
 



The EDIFICE-PVR Framework 
The presentation of EDIFICE-PVR in this section is di-

vided into three subsections: 1) a discussion of the rationale 
for the development of EDIFICE-PVR; 2) a description of 
method of identification and development of the 10 proper-
ties; and 3) a detailed treatment of each property, including 
an examination of each one’s cognitive and perceptual influ-
ences, and examples of CASTs that provide the ability to 
adjust the values of properties to support complex cognitive 
activities. 

Rationale 
In recent years, researchers have been emphasizing the 

need for more systematic development of theoretical frame-
works (e.g., Chen, 2010; Fabrikant, 2011; Kaptelinin & 
Nardi, 2012; Keim, Kohlhammer, Ellis, & Mansmann, 
2010). Kaptelinin and Nardi, for instance, state that “while 
understanding the structure and dynamics of purposeful hu-
man activities and identifying possibilities for their advanced 
technological support remain important issues, there is cur-
rently also marked interest in frameworks that can provide 
an explanation of why and how certain subjective phenome-
na are taking place in situations surrounding the use of in-
teractive technologies.” (2012, p. 47, italics added). One of 
the goals of EDIFICE is to develop a comprehensive frame-
work that is applicable to all interactive tools that support the 
performance of complex cognitive activities through rich 
HII. In other words, the goal is to develop a general and 
comprehensive framework that can motivate research and 
design for a broad range of tools, tasks, actors, activities, 
platforms, techniques, and domains. As EDIFICE-PVR is 
one component of the EDIFICE framework, it adopts the 
same goal. Therefore, the properties of VRs that are present-
ed as part of EDIFICE-PVR are generally applicable—
whether to information visualization, visual analytics, or 
health informatics; whether using a laptop, desktop, tablet, 
or projection display; whether engaged in sense making, 
learning, problem solving, or decision making; whether in 
the context of biology, engineering, education, finance, or 
healthcare; whether the actor being young or old; and 
whether for a single actor or for multiple actors. Further-
more, as EDIFICE-PVR is concerned with human-
information interaction, rather than human-technology inter-
action, it is not invalidated by technological change and is 
applicable across a wide variety of technologies and plat-
forms. 

Since EDIFICE-PVR is concerned with HII in the con-
text of using CASTs, where cognitive activities are often 
complex and unstructured, to be most useful the properties 
must be embedded within a theoretical substrate that ac-
counts for the complexities involved in the performance of 
such activities. In other words, simply identifying a number 
of properties—although potentially useful and welcome 
work—is of limited value if the properties are isolated from 
underlying theoretical frameworks and models that explain 
and describe how complex cognitive activities are per-

formed. Thus, the initial task for developing EDIFICE-PVR 
was to situate it firmly within a broader theoretical frame-
work, such that its conceptualization was consistent with 
other research concerned with HII, interactivity, and the per-
formance of complex cognitive activities. Therefore, the 
theoretical foundations discussed above—which have been 
developed further in other components of the EDIFICE 
framework—were important in the conceptualization of the 
properties themselves, and in understanding how adjusting 
the values of properties fits into the overall performance of 
complex cognitive activities.  Furthermore, the development 
of EDIFICE-PVR was guided by the conviction that syncret-
ic and holistic research is much needed in this area, and by 
the assumption that there are indeed principles, features, 
processes, and relationships that are universal to all infor-
mation spaces, domains, VRs, activities, and actors. As this 
domain is relatively young and underdeveloped, the explica-
tion and organization of fundamental concepts and their rela-
tionships that EDIFICE-PVR provides—e.g., VRs, infor-
mation spaces, tasks, activities, and perceptual and cognitive 
influences of VRs—can stimulate further theoretical re-
search and the development of frameworks that more fully 
describe, explain, and predict the performance of complex 
cognitive activities through CAST-mediated HII. 

 
Identification and Development of Properties 

Two processes shaped the identification and development 
of the properties of EDIFICE-PVR: 1) a broad survey of 
existing literature, and 2) a broad survey of existing CASTs. 
The survey of existing literature included research from the 
cognitive and learning sciences, perceptual psychology, in-
formation science, human-computer interaction, diagram-
matic reasoning, interaction design, information design, and 
multiple visualization sciences. Based on numerous studies 
that have been done in these areas, it is well known that 
there are certain properties of VRs and visual information 
displays that affect perceptual processing of information, the 
speed with which decisions can be made, and other aspects 
of how humans process and think with information. Thus, in 
light of our goal to develop a general framework, our search 
was for properties of VRs that transcended particulars, and 
that, in the context of interactive VRs, could be adjusted to 
facilitate complex cognitive activities. We examined studies 
that had been conducted in the aforementioned areas to de-
termine which of the findings were applicable to or could be 
generalized to interactive VRs. In addition to the aforemen-
tioned disciplines, we examined relevant literature from in-
formation graphics, communication design, information be-
havior, and other areas that are not necessarily concerned 
with interactive VRs and/or cognitive activities, but which 
could still provide valuable insights into the development of 
EDIFICE-PVR. During this process of literature review, we 
took note of the findings of studies that examined how fea-
tures of VRs affected cognitive and perceptual processing, 
and examined existing established design and evaluation 
guidelines for VRs. We identified properties of VRs from 



literature that described the use, development, and evalua-
tion of financial analytics tools, digital library interfaces, 
digital games, learning tools, visual analytic tools, and oth-
ers.  

The second process that shaped the identification and de-
velopment of the properties was a systematic examination of 
100 CASTs. To assure a wide sampling, we included tools 
from many domains. Although there is overlap, they can be 
roughly broken into 50 from visualization—information, 
data, geographic, scientific, medical and health visualization, 
and visual analytics; 25 from cognitive, educational, and 
learning technologies and digital cognitive games; 25 from 
personal information management, information retrieval, 
knowledge management, library science, and general 
productivity tools. A sampling of these is listed in Table A1 
in the Appendix. While examining each tool, we identified 
the features of its VRs and kept a record of them. This pro-
cess was similar to the process of pattern mining described 
by Dearden and Finlay (2006), in which invariant features of 
existing designs are identified and used to construct design 
patterns. 

As these two mutually reinforcing processes were con-
ducted in the context of developing a general framework, we 
categorized a number of features of VRs that were consistent 
across activities, domains, and actors. Eventually, these fea-
tures were given a common label, and are now known by the 
properties that are presented in this paper. During the identi-
fication of properties of any phenomena, a desired level of 
abstraction must be determined. In the context of EDIFICE-
PVR, the desired level of abstraction was based on three 
overlapping goals: 1) to provide a reasonable number of 
properties with which researchers and designers could work; 
2) to ensure that the features of each property had a signifi-
cant-enough effect on cognitive processes to warrant their 
own category; and 3) to maintain a consistent level of ab-
straction across all properties. Consider, for example, the 
appearance property (discussed in the following section). 
This property includes features such as hue, color, and 
opacity. Making each of these a separate property, however, 
would lead to a large, cumbersome list of properties that 
would likely be of limited value. In addition, these features 
alone do not seem to have a significant enough effect on 
cognitive processes to warrant a distinct property.  

The two processes described above were intertwined and 
mutually beneficial. A continual identification of features, 
categorization of features, refinement of categorizations, and 
confirmation and testing between literature and CASTs 
eventually led to the properties that are now present. These 
are listed and briefly characterized below in Table 1. This 
systematic approach leads us to believe that the list of prop-
erties is fairly comprehensive; however, we do not claim that 
it is exhaustive, and, especially since this is an initial attempt 
at this particular area of research, it is possible that additions 
or refinements may occur in the future.  

 

TABLE 1. Essential properties of interactive VRs, the values of which 
should be made adjustable to provide better support for the performance of 
complex cognitive activities 

Property Characterization 

Appearance aesthetic features (e.g., color and texture) by which 
information items are encoded in a VR 

Complexity degree to which encoded information items exhibit 
elaborateness and intricacy in terms of their quantity 
and interrelationships in a VR 

Configuration manner of arrangement, organization, and ordering of 
information items that are encoded in a VR 

Density degree to which information items are encoded com-
pactly in a VR 

Dynamism degree to which encoded information items exhibit 
movement in a VR 

Fidelity degree to which information items are accurately en-
coded in a VR 

Fragmentation degree to which information items are broken up and 
discretized and encoded into non-continuous areas in a 
VR 

Interiority degree to which information items are latent and remain 
hidden below the surface of a VR, but are potentially 
accessible and encodable 

Scope degree to which the growth and development of infor-
mation items are encoded in a VR 

Type form of a VR in which information items are encoded 

 
 
A Note on the Justification and Validity of Particular Prop-
erties. It may appear, at a first glance, that some properties 
are simply different labels for the same phenomenon; after 
closer investigation, however, it should become evident that 
each property is distinct in its fundamental nature. Indeed, an 
attempt has been made here to demonstrate the intrinsic and 
distinct nature of each property. This distinctiveness does 
not preclude, however, situations in which there is a positive 
correlation between the values of two or more properties—
situations in which increasing or decreasing the value of a 
property also increases or decreases the value of one or more 
other properties. In fact, it is often the case that adjusting the 
values of a property adjusts the values of other properties. 
As mentioned earlier, interactivity is an emergent property 
that results in part from the interaction between an actor and 
VRs—where such VRs, in practice, manifest the values of 
properties in a coalesced manner. While the values of each 
property in isolation may have an effect on cognitive pro-
cesses, the ultimate utility of this framework rests on a bal-
ance between analysis and synthesis of properties with re-
spect to their influence on the performance of complex cog-
nitive activities. 

In what follows, each property is accompanied by exam-
ples of CASTs that demonstrate and validate the existence of 
that particular property. The fact that a VR is dense, for in-
stance, ontologically validates the density property; there is 
no need for experimenting to see whether or not the property 
exists. What is in need of experimentation, however, is the 
effect of the properties on the performance of cognitive ac-
tivities. We have attempted below to validate these by refer-



ring to numerous empirical studies dealing with the percep-
tual and cognitive effects of VRs across a wide variety of 
activities, tasks, and domains.  
 
Appearance. Appearance refers to aesthetic features such as 
color, saturation, density, perspective, angle, orientation, and 
texture by which information items are encoded in a VR. 
Much research confirms that such features can significantly 
influence cognitive and perceptual processes (e.g., see 
Cleveland & McGill, 1984; Nowell, 1997; Ware, 2008, 
2012). While performing visual search tasks, for instance, a 
distinct size or color can effectively make VRs stand out and 
thus increase speed of identification (see Wolfe, 1998). Ad-
ditionally, actors often have their own appearance-related 
preferences that can help them perform tasks (Yi et al., 
2007). For instance, actors may associate a particular shape 
or color with a particular meaning (see Sedig, Rowhani, Mo-
rey, & Liang, 2003). In addition, color can have very differ-
ent semantics from one culture to the next (Ware, 2008). Not 
only do the values of appearance affect cognitive and per-
ceptual processes, but the process of change between differ-
ent appearance values can also have a significant effect 
(Ware, 2004).  

Consider a sense-making activity in which an actor is try-
ing to develop a mental model of a citation network. The 
appearance of a VR of the network could be adjusted in dif-
ferent ways depending on the task being performed. For in-
stance, to identify all papers that share a common keyword 
or subject area, the actor could adjust the values such that the 
appropriate components of the VR are encoded with a par-
ticular color. To encode the relative strength of the connec-
tions between authors, the connections between them could 
be encoded with relative degrees of saturation. The most 
effective feature to adjust in any situation is dependent on 
the task. If actors are interested in tasks involving categorical 
properties of the information space, for example, color and 
texture are effective; for tasks involving ordinal properties, 
saturation and density are effective. Designers and evalua-
tors must be aware of which of these features are best suited 
to which tasks (see, e.g., Cleveland & McGill, 1984; Nowell, 
1997; Spence, 2007; Ware, 2008). However, as actors do not 
follow an algorithmic approach during the performance of 
complex cognitive activities, and strategies and goals are 
constantly revised and updated (see Sedig & Parsons, 2013), 
actors should be given the ability to adjust such values to 
best suit their task and mental state at any point during an 
activity. 

 
Complexity. Complexity refers to the degree to which en-
coded information items exhibit elaborateness and intricacy 
in terms of their quantity and interrelationships in a VR. 
Complexity ranges in value from low (e.g., a single item 
with no encoded relationships) to high (e.g., thousands of 
items with many intricate pathways and connections among 
them).  If complexity of VRs is not suitable for a task or an 
activity, a large burden can be placed on perceptual and cog-

nitive faculties (Demetriadis & Cadoz, 2005; Moody, 2007). 
This burden can result in cognitive overload (Sweller, 2002) 
and has been shown to result in errors while performing 
tasks (e.g., see Huang, Eades, & Hong, 2009).  Numerous 
studies have been performed confirming the negative effects 
of inappropriate values of complexity while performing 
tasks and activities. For example, Kumar & Benbasat (2004) 
found that as the complexity of graphs increased, the time 
taken to comprehend information also increased. Cruz-
Lemus, Maes, Genero, Poels, & Piattini (2007) also found 
that as the complexity of a diagram increased, the length of 
time it took to understand the information also increased; in 
addition, they found that the efficiency with which the in-
formation was understood decreased. Huang et al. (2009) 
tested the effect of VR complexity on cognitive load. Their 
results similarly demonstrated that complexity had a signifi-
cant effect on response time and on efficiency while per-
forming tasks. However, they also measured the effect of 
complexity on the amount of mental effort required to com-
plete a task, and found that more complex VRs required a 
significantly higher amount of mental effort to understand.  

It may sometimes be the case that the increased percep-
tual and cognitive burden that high values of complexity 
place on actors is desirable. For instance, there is some evi-
dence that high values of complexity can lead to increased 
planning (see Ainsworth and Peevers, 2003). It is possible 
that information is more likely to be committed to memory 
when VRs are more complex, whereas lower values of com-
plexity allow actors to rely on visual search without engag-
ing in deep mental processing of information.  This type of 
forced deep engagement with information may be desirable 
for some types of CASTs, such as educational tools, but not 
others, such as tools for intelligence analysis (see also Par-
sons & Sedig, 2013b for more discussion of this topic). 

Figure 3 shows a CAST, VisANT (http://visant.bu.edu), 
that supports visual data mining of multi-scale biological 
networks and pathways. One sub-activity that would be a 
likely component of any complex cognitive activity per-
formed with this tool is sense making—an activity involving 
the development of a mental model of an information space 
about which one has insufficient knowledge (Klein, Moon, 
& Hoffman, 2006). Such an activity involves tasks such as 
identifying important items or pathways within the space, 
categorizing items based on similar features, and determin-
ing the hierarchical structure of the space. The complexity of 
the VR in Figure 3 (L), however, can make such tasks chal-
lenging. For instance, the number of items and the number of 
pathways among them can make the identification of im-
portant pathways very difficult due to cognitive and percep-
tual load. Figure 3 (R) shows how the actor can, through 
interaction, collapse a number of nodes into their metabolic 
modules to facilitate identification of high-level pathways 
within the network. As the actor progresses in the sense 
making activity, she can repeatedly collapse and expand 
VRs to dynamically adjust and develop her mental model of 
the information space. 



 
FIG. 3. Adjusting the value of complexity of a VR. 

 
 
Configuration. Configuration refers to the manner of ar-
rangement, organization, and ordering of information items 
that are encoded in a VR. Encoded items may be arranged 
according to certain data attributes (e.g., categorical, ordinal) 
or they may have a random arrangement. Different arrange-
ments and orderings of encoded information items can affect 
cognitive activities in fundamentally different ways (Peng, 
Ward, Rundensteiner, 2004). For example, the ordering of 
encoded information items affects how easily actors detect 
underlying patterns, dependencies, trends, correlations, and 
relationships (Spence, 2007; Pirolli & Rao, 1996; Siirtola, 
1999). Many CASTs are designed without much considera-
tion for how encoded information items are arranged, and 
often do not provide mechanisms for adjusting the value of 
configuration (Peng et al. 2004).  However, as mental space 
and representation space become coupled into a coordinated 
cognitive system through interaction, adjusting the ordering 
of information items in representation space can directly 
impact the ordering of information items in mental space 
(Kirsh, 1995a). Research in cognitive science has shown that 
it is easier to adjust the configuration of external representa-
tions of information while performing cognitive activities 
than to adjust one’s internal mental representations without 
external support (Kirsh, 1995a). Indeed, studies have shown 
that adjusting the configuration of information representa-
tions has a significant positive effect on the performance of 
cognitive activities (e.g., see Kirsh, 1995b; Maglio, Matlock, 
Raphaely, Chernicky, & Kirsh, 1999). Providing mecha-
nisms whereby actors can adjust the configuration of repre-
sentations can facilitate cognitive activities by triggering 
mental associations that result from viewing new perspec-
tives of information, and by simplifying the representation 
space from the perspective of the actor (Kirsh, 1995a).  

Figure 13 shows a CAST, Regional eXplorer 
(stats.oecd.org/OECDregionalstatistics), that supports nu-

merous activities involving regional statistics related to eco-
nomic co-operation and development. The manner in which 
information items are organized in Figure 4 (L) does not 
make it easy to identify correlations within the encoded in-
formation. However, the actor can adjust the configuration 
value by sorting one column of the table (Figure 4R). Alt-
hough no new information has been encoded, adjusting the 
value of configuration in this manner makes it very easy for 
the actor to identify a strong correlation between two col-
umns.  

 
Density. Density refers to the degree to which information 
items are encoded compactly in a VR. Density ranges in 
value from low (e.g., one or two dots that are spread out in a 
large display area) to high (e.g., thousands of information 
items encoded compactly in a small area). If the value of 
density of VRs is too high, perceptual tasks, such as locating 
and extracting relevant information, can be negatively af-
fected (Pirolli, Card, & van Der Wege, 2001). In addition, 
such VRs can burden actors’ mental faculties by placing a 
large informational load on working memory (Green & 
Petre, 1996). When engaged in decision making, for exam-
ple, VRs that are too dense hinder quick extraction of infor-
mation that is required to make decisions (Rosenholtz, Li, & 
Nakano, 2007). Indeed, numerous studies have shown de-
creased task performance when VRs have density values that 
are not appropriate for a task. For instance, Phillips and 
Noyes (1982) demonstrated that maps with low density val-
ues were associated with better performance on a number of 
visual tasks. Similarly, Springer (1987) showed quicker lo-
cating of targets when VRs were less dense. The results of 
these studies suggest that tasks—especially those requiring 
quick performance—are hindered if the value of density is 
too high. However, more compactness of information encod-
ing can sometimes be desirable.  



  
 

 
FIG. 4. Adjusting the value of configuration of a VR. 

 

 

 
 

FIG. 5. Adjusting the value of density of a VR. 
 

 

For example, representations that encode many information 
items and are very compact can provide a high-level over-
view of very large information spaces and can facilitate 
high-level comparisons (Tufte, 2001).  

Many VRs are designed with the intention of encoding a 
large amount of information in an attempt to increase the 
cognitive information processing capabilities of actors (Pi-

rolli et al., 2001). Long-standing prescriptions, however, 
often do not consider VRs with their interactive features at 
the forefront of consideration. For instance, according to 
Tufte (1990), “enriching the density of data displays [is one 
of] the essential tasks of information design” (p. 33), and, 
“visual displays rich with data are…frequently optimal…the 
more relevant information within eyespan, the better.” (ibid., 



50). This may be true for many non-interactive, static repre-
sentations. However, such propositions are not necessarily 
applicable to CASTs. Consider Figure 5, which shows a 
CAST, Global Council Interlinkage (janwil-
lemtulp.com/worldeconomicforum/), that supports explora-
tion of data derived from a survey of experts from 72 Global 
Agenda Councils of the World Economic Forum. The value 
of density of the VR shown on the left makes it difficult to 
perform tasks such as identifying connections between 
councils. Through interaction, an actor can select a particular 
council to show connections only to it and hide other con-
nections, thereby facilitating such a task. Note that it is not 
the complexity of the VR that hinders such a task—that is, 
the hindrance is not due to the elaborate and intricate nature 
of the encoded items and their connections—but rather, it is 
due to the compactness with which the connections are en-
coded. 
 
Dynamism. Dynamism refers to the degree of movement of 
encoded information items in a VR. Dynamism ranges in 
value from zero (i.e., all encoded information items are stat-
ic) to high (i.e., all encoded information items are in mo-
tion). Actors can adjust the value of this property to increase 
or decrease the value of dynamism while performing cogni-
tive activities.  VRs that exhibit movement can effectively 
illustrate structural, functional, and procedural relationships 
among encoded information items (Jones & Scaife, 2000). 
Additionally, movement within a VR can make spatial in-
formation and depth order salient, reduce spatial ambigui-
ties, and help overcome perceptual and cognitive biases that 
can be acquired from static VRs (Kaiser & Proffitt, 1987).  It 
is often the case that cognitive activities involve information 
spaces that have a temporal nature, and motion in VRs can 
be an effective way to communicate temporal processes. 
However, although dynamism can facilitate cognitive activi-
ties, information items may be encoded in a transient fashion 
that does not facilitate sustained visual inspection (Tversky, 
Morrison, & Betrancourt, 2002). In other words, when a VR 
has no motion it is available for inspection without temporal 
constraints. This gives actors time to explore a VR at their 
own pace, which potentially avoids perceptual and cognitive 
overload (Cook, 2006). Schwan and Riempp (2004) com-
pared performance of subjects who could adjust the dyna-
mism values of VRs to those who could not. The results 
showed a significant decrease in time required to master the 
task in those who could adjust the values to suit their contex-
tual and cognitive needs. As actors have different needs ac-
cording to different tasks that are performed during an ac-
tivity, no exact value of dynamism can be considered ideal 
for all contexts, and mechanisms should be provided to al-
low actors to adjust the value of dynamism to suit their par-
ticular tasks. 
 

Fidelity. Fidelity refers to the degree to which information 
items are accurately encoded in a VR. Fidelity is a multi-

faceted property and can be with respect to structure, time, 
geometry, process, or function. Actors can adjust the value 
of one facet only or of multiple facets simultaneously. Fi-
delity ranges in value from low (i.e., very inaccurate) to high 
(i.e., completely accurate). The ideal value of fidelity for any 
given VR is very much context-dependent. Waller, Knapp, 
& Hunt (2001) suggest that tasks involving perceptual and 
motor training about particular information spaces benefit 
from high values of fidelity (see also Hunt & Waller, 1999). 
With tasks involving higher-level, conscious cognitive pro-
cessing and the development of flexible mental models, 
however, a high value of fidelity is not necessarily best. In 
their study, Waller et al. found that differences in individual 
characteristics, such as gender, level of expertise, and cogni-
tive ability, accounted for a significant variance in perfor-
mance of the subjects, suggesting that even with a common 
task the ideal value of fidelity is actor-dependent. The ideal 
value of fidelity is also dependent on the tasks being per-
formed during an activity. However, it may not always be 
obvious which aspects of an information space should be 
encoded with a high value of fidelity. For example, with the 
famous problem of the Seven Bridges of Königsberg, it was 
long thought that the geometry of the information space was 
important to represent with a high value of fidelity. By real-
izing that the geometry was irrelevant to the problem, how-
ever, Euler could represent the information space with a set 
of vertices and edges that were independent of the geometry 
of the information space, which allowed him to solve the 
problem. For the purpose of his problem solving activity, it 
was the network topology of the bridges that required a high 
value of fidelity. Another well-known example involves the 
famous London Underground map. When introduced, alt-
hough the map had a low value of geometric fidelity, it en-
coded the topology of the subway network in a manner that 
facilitated pertinent tasks. It is reported that people found the 
map much more useful than the previous map that had a 
higher value of geometric fidelity, as they did not require a 
high value of geometric accuracy for the types of activities 
they were performing—namely, planning how to navigate 
from one location to another. Giving actors the ability to 
dynamically adjust fidelity values of a VR of the London 
Underground could potentially provide even stronger sup-
port for such planning and decision making activities. Con-
sider the CAST, Time Travel Tube Map (www.tom-
carden.co.uk/p5/tube_map_travel_times/applet/), shown in 
Figure 6 that supports planning and making decisions about 
travelling the London Underground. Actors are initially pre-
sented with a VR that encodes the geometry of the infor-
mation space with a high value of fidelity (Figure 6 L). 
However, because their task is to identify travel times in 
order to plan and make decisions, such geometric fidelity is 
not helpful. This CAST allows actors to decrease the geo-
metric fidelity to help identify travel times between stations 
(Figure 6 M and R). Although the resulting VRs have a low-
er value of geometric fidelity, allowing the actor to adjust 
this value can contribute to the overall planning activity. If 



the actor needs to perform another task, such as identifying 
the precise location of a station and its proximity to a partic-

ular part of the city, she could adjust the value of geometric 
fidelity to make it high again. 

 
 

 
 

FIG. 6. Adjusting the value of geometric fidelity of a VR. 
 

 
Fragmentation. Fragmentation refers to the degree to which 
information items are broken up and discretized when en-
coded in a VR. Information items may be encoded in a 
whole and continuous manner; alternatively, they may be 
encoded in a divided and discrete manner. Fragmentation 
ranges in value from zero (i.e., completely whole and con-
tinuous) to high (i.e., completely divided and discrete). De-
veloping a mental model of an information space that in-
cludes an accurate model of discreteness and continuity and 
whole-part relationships is important in many complex cog-
nitive activities. In the context of mathematical thinking and 
problem solving, for example, research suggests that to un-
derstand mathematical concepts (e.g., proportions, fractions, 
ratios) it is important to deeply understand discreteness and 
wholeness of an information space and the relations between 
wholes and parts (see Lesh & Harel, 2003). Olive (2000) 
suggests that allowing actors to interact with VRs of such 
concepts to adjust their values of fragmentation can facilitate 
such an understanding. Dörner & Wearing (1995) note that 
one of the essential elements of effective problem solving, 
planning, and decision making in complex situations is 
proper whole-part analysis during actors’ goal formation. As 
goals are constantly revised and updated during the perfor-
mance of complex cognitive activities while one explores 
and works with an information space, adjusting the value of 
fragmentation of VRs can help with whole-part analysis and 
the development of more sophisticated goals. Such think-
ing—often referred to as thinking both globally and local-
ly—is important for reasoning, problem solving, and deci-
sion making in health professions (Higgs & Jones, 2008) and 
in business and management contexts (Proctor, 2010). Aside 
from understanding whole-part relationships, VRs with a 
low value of fragmentation can alleviate potential burden 
placed on working memory while carrying out tasks (Mun-
yofu, Swain, Ausman, Lin, Kidwai, & Dwyer, 2007). 

Figure 7 shows a CAST, Panopticon 
(www.panopticon.com), that supports analytical reasoning, 

decision making, and other activities concerned with finan-
cial information spaces. To perform such complex cognitive 
activities, an actor would likely need to develop an elaborate 
mental model of the information space, which would certain-
ly involve tasks such as identifying whole-part relationships 
among industries and sectors, categorizing stocks according 
to their industries and sectors, and assessing the relative val-
ue of stocks. Figure 7 shows how the actor can adjust the 
value of fragmentation of the VR to show the relationships 
among and values of industries, and their division into su-
persectors and individual stocks. 

 
Interiority. Interiority refers to the degree to which infor-
mation items are latent and remain hidden below the surface 
of a VR, but are potentially accessible and encodable. Interi-
ority ranges in value from zero (i.e., all information items 
are encoded at the visually perceptible surface of a VR) to 
high (i.e., most information items are latent and unencoded, 
but can be brought to the visually perceptible surface of a 
VR). Actors can act upon a VR (e.g., by drilling into it) to 
access deeper layers of information and bring latent infor-
mation items to the surface. Historically, with static repre-
sentations designers have had to make sacrifices and decide 
on trade-offs. As a result, information items that actors re-
quire for tasks may not be encoded and actors may be forced 
to make extrapolations, which may place a large burden on 
mental space. VRs that provide options for actors to adjust 
their value of interiority allow latent information to be 
probed and investigated when needed (Jern, 1997; Spence, 
2007; Stone, Fishkin, & Brier, 1994). This can help to miti-
gate perceptual and cognitive overload and can also help 
create balance between overview and detail (Yi et al., 2007). 
When such interactive features are included in CASTs, ac-
tors can perceive the macrostructure of the encoded infor-
mation, pose questions about it, and answer them by subse-
quently drilling them for latent information (Eick, 2000).  

 



 
 

FIG. 7. Adjusting the value of fragmentation of a VR. 
 

 
Huang et al. (2009) compared the effect of VRs that encoded 
only the information items required for a task to VRs that 
encoded extra items from the information space. They found 
that extraneous encodings had a significant negative effect 
on cognitive load and on task performance. Such studies 
suggest that actors should be given the ability to adjust the 
value of interiority to work with only the information that is 
needed for a particular task.  

Figure 8 shows a CAST, EdgeMaps (mariando-
erk.de/edgemaps/), that integrates the representation of ex-
plicit and implicit relations among items within an infor-

mation space to support sense making and knowledge dis-
covery. The VR in Figure 8 is depicting a timeline of well-
known philosophers. To perform tasks such as identifying 
influences between philosophers and assessing the relative 
effect of their influences, actors can drill into the VR of each 
individual philosopher to bring such information to the sur-
face and facilitate the performance of such tasks. As it would 
be unwieldy to encode such information all at once, control 
is given to actors to adjust the value of interiority and bring 
such information to the surface as needed. 

 
 
 

 
 

FIG. 8. Adjusting the value of interiority of a VR. 
 

 
Scope. Scope refers to the degree to which the growth and 
development of information items are encoded in a VR.  
Actors can adjust the value of this property so that a VR en-
codes more or less of the growth of information items in a 
successive and sequential manner. Many information spaces 
contain information items that exhibit successive stages of 
growth through time and/or space. Being able to understand 

the prevalence of certain structures within such information 
spaces often depends upon tasks such as identifying the tem-
poral order in which relationships are established (Moody, 
McFarland, & Bender-deMoll, 2005). Doing so can facilitate 
activities such as forecasting research trends and the life 
span of scientific communities (An, Jansen, & Milios, 2001). 
Gradually encoding the growth or development of an infor-



mation space can be particularly useful for information spac-
es encompassing mathematical patterns, physical structures, 
as well as social, computer, disease, political, scientific, and 
co-citation networks (see Chen, 2004; Chen & Morris, 2003; 
Moody et al., 2005; Toyoda & Kitsuregawa, 2005), and can 
facilitate the detection of patterns and the understanding of 
how clusters are merged and split over time (Card, Suh, 
Pendleton, Heer, & Bodnar, 2006; Toyoda & Kitsuregawa, 
2005). As actors develop mental models of such information 
spaces, static VRs can lead to erroneous interpretations, 
whereas interactive and/or dynamic VRs that show the 
growth of the information space can lead to more accurate 
interpretations (Moody et al., 2005). The ability to adjust the 
scope of VRs can play an important role in the performance 
of many complex cognitive activities, as the ability to ana-

lyze ideas by reasoning forward and backward and make 
sense of how information items are chained together is im-
portant in analytical thinking (Shrinivasan & Wijk, 2008).  

Figure 9 shows a CAST, NetLogo (Wilensky, 1999, 
2005), that supports numerous activities involving multi-
agent modeling. In this particular example, an actor is mak-
ing sense of the dynamics of preferential attachment net-
works. In this instance, the scope of the VR is being adjusted 
to increase it and encode more of the growth of the infor-
mation space (Figure 9 from L to R). The CAST allows only 
for adjusting the scope value in this one direction. Often 
times, however, actors will want to adjust the scope in both 
directions. Designers should consider the nature of tasks and 
activities that will be performed to determine how the value 
of this property should be made adjustable. 

 
 

 

 
FIG. 9. Adjusting the value of scope of a VR. 

 

Type. Type refers to the form of a VR in which information 
items are encoded. Different forms of VRs, such as plots, 
diagrams, images, symbols, and linguistic representations, 
have different benefits and trade-offs for communicating 
information (see Larkin & Simon, 1987; Novick, 2006; 
Stenning & Oberlander, 1995; Suwa & Tversky, 2002). Not 
only do different representational forms facilitate different 
tasks, but also the act of translating a representation from 
one type to another has been shown to facilitate the perfor-
mance of complex cognitive activities (Tabachneck-Schijf & 
Simon, 1996). For example, when trying to solve a problem, 
changing the representational form of the information space 
can sometimes trigger apprehension of a solution (Robert-
son, 2001). Bodner and Domin (2000) investigated problem 
solving in the context of organic chemistry and concluded 
that “a significant difference between students who are suc-
cessful in organic chemistry and those who are not is the 
students’ ability to switch from one representation system 
[type] to another” (ibid., p.27).  

To think about this property systematically, taxonomies 

and catalogs of types of VRs and their characterizations are 
needed. Although some work has been done in this area, 
there is no widely agreed upon typology of VRs. In the con-
text of CAST-mediated HII, most designers and evaluators 
likely need a catalog of types that is manageable, accounts 
for common visualization techniques, and also identifies 
their utility in supporting complex cognitive activities. To 
contribute to this need, Parsons and Sedig (2013a) have re-
cently categorized common VRs into six high-level types: 1) 
visual encodings and marks; 2) glyphs and multidimensional 
icons; 3) plots and charts; 4) maps; 5) graphs, trees, and 
networks; and 6) enclosure diagrams. In addition, they dis-
cuss the utility of each type for performing complex cogni-
tive activities.  They also identify a number of common 
techniques (e.g., treemaps, radial convergence diagrams, 
heatmaps, parallel coordinate plots) that fall under each cat-
egory. With a manageable set of types, an examination of 
which types best suit particular tasks and activities, and a 
categorization of many common visualization techniques, 
such work can support methodical design and evaluation of 



this particular property of VRs. This work is far from com-
plete, however, and future research is needed to develop 
more comprehensive categorizations of VRs at different lev-
els of granularity. 

Figure 33 show a CAST, Tulip (http://tulip.labri.fr), that 
supports numerous activities dealing with complex net-
works, such as scientific, social, or biological networks. Fig-
ure 10 (L) shows a VR of the relations among authors and 

papers within the information visualization community. This 
node-link VR type encodes relationships and facilitates tasks 
such as identifying highly connected nodes and major path-
ways. Other tasks, such as determining exact values and pre-
cise rankings, however, are not easily accomplished with 
such a VR. Figure 10 (R) shows the result of an actor trans-
lating or converting the node-link VR into a tabular form to 
facilitate such tasks.  

 
 
 

 
 

 
 

FIG. 10. Adjusting the value of type of a VR. 
 
 
 

Integrated Scenario: Epidemiological Analy-
sis  

In the previous section, CASTs from different domains 
that supported different complex cognitive activities were 
used to demonstrate the universality and general applicabil-
ity of EDIFICE-PVR. In contrast, this section demonstrates 
how EDIFICE-PVR can be used in an integrated manner for 
systematic design and evaluation of a single CAST for a 
particular activity. This is demonstrated using a scenario in 
which an epidemiologist is engaged in an analytical reason-
ing activity regarding a disease outbreak. As the focus is on 
the interaction between the actor and VRs, for the sake of the 
scenario it is assumed that other considerations for proper 
design and use of CASTs are in place (e.g., data is accurate, 
complete, and consistent; the tool has built-in algorithmic 

behaviors; and so on).  
To perform such an activity, the epidemiologist would 

need to perform other complex cognitive activities (i.e., sub-
activities) such as problem solving, sense making, and fore-
casting. Furthermore, as described previously, such activities 
involve the performance of goal-directed tasks and sub-
tasks, as well as actions and low-level interface events. For 
example, to make sense of the current state and progression 
of the disease outbreak, the epidemiologist would likely 
need to perform tasks such as locating the origin of the dis-
ease, determining the rate and/or direction of its spread, nav-
igating the disease network to discover pathways, and identi-
fying individuals of importance. EDIFICE-PVR can support 
systematic thinking about design and evaluation of VRs 
from a human-centered perspective that accounts for the 
tasks and activities an actor will likely perform. Consider the 



VR shown in Figure 11 (L), which encodes the existence and 
location of disease occurrences and known relationships 
among the infected individuals (e.g., friend, coworker, or 
relative). In the context of performing specific tasks, such as 
locating the origin of the disease and determining the rate 
and/or direction of its spread, a designer could infer which 
properties of the VR would likely need to have their values 
adjusted to help carry out the tasks. One strategy is to go 
through the properties methodically as follows. In terms of 
appearance, actors may wish to adjust colors to facilitate 
certain sub-tasks (e.g., to categorize diseases according to 
status, to identify and mark items of interest) while reason-
ing about how the disease is spreading and which areas are 
more seriously affected. Adjusting the value of density 
would not likely have a significant benefit for these particu-
lar tasks, as more diffuseness would not bring the actor any 
closer to locating the origin of the disease or determining its 
spread. Adjusting the value of complexity would not help to 
locate the origin of the disease, as it is not a matter of adjust-
ing the elaborateness or intricacy of the VR. Adjusting the 
configuration value could help with similar tasks in other 
contexts; however, with this VR it would be detrimental, as 
the geographical locations of disease occurrences must be 
maintained to adequately complete the tasks. Adjusting the 
dynamism value would not likely be beneficial—increasing 

the value of motion would not facilitate such tasks. In terms 
of fidelity, in this case a high degree of structural and geo-
metric fidelity must be maintained, as the tasks are funda-
mentally linked with geospatial accuracy. In terms of frag-
mentation, neither increasing or decreasing its value would 
help, as the epidemiologist needs to see the disease occur-
rences in a discrete manner to identify their geographical 
locations and connections between them.  In terms of interi-
ority, drilling into the VR to encode latent information may 
potentially be of some benefit, as it can provide information 
such as the date of infection. However, the most benefit 
would likely come from adjusting the value of the scope 
property of the VR. By adjusting the value of this property, 
the epidemiologist could increase and decrease the degree to 
which the growth and development of information items are 
encoded in the VR (see Figure 11 R). Doing so can help the 
epidemiologist perform other tasks, such as determining how 
certain areas grow and merge over time, where and when 
certain clusters are formed, and tasks concerned with the 
growth of the disease network and the connections among 
disease occurrences. Finally, adjusting the type value could 
help with these tasks, except that abandoning the map-based 
VR would hinder tasks in which geospatial accuracy is im-
portant. 

 
 

 

 
 

FIG. 11. VR of disease occurrences and relationships (L). Adjusting the scope of the VR to locate the origin of the disease and determine 
its direction of spread (R). 

 
 

As an alternative to the strategy examined above, designers 
and evaluators can first go through each property systemati-
cally to predict which tasks and activities would be facilitat-
ed by providing the ability to adjust its values. Such an en-

deavor could help to project what actions should be made 
available to adjust values of a VR’s properties. For example, 
as the information space in this scenario is very large and 
complex, many of the information items are not encoded in 



the representation space and remain latent. It would be very 
likely that at some point during an activity, actors would 
need to access deeper layers of information from the infor-
mation space. The epidemiologist may wish to browse or 
compare the relationships between individual disease occur-
rences and other known disease factors that may have causal 
links to the disease being investigated. Therefore, providing 
opportunities for actors to drill into the VR to bring latent 
information to the surface can be helpful. Designers can then 
use their creativity and design expertise to determine how to 
implement such a feature. For instance, Figure 12 shows the 
result of an actor drilling into a VR to access latent infor-
mation items (i.e., individual disease occurrences and their 
relationships to known disease factors) and bring them to the 
surface. The prior state of the representation space encoded 
disease occurrences and their locations (as orange dots), but 
known information about each occurrence was latent. With 
the newly encoded information, disease occurrences are en-
coded (as orange lines) and their relations to known disease 
factors (i.e., genetic, nutritional, lifestyle, and psychological 
factors) are also encoded and brought to the surface of the 
VR. Designers can then determine which tasks would likely 
be performed, and provide options for adjusting values of 
different properties as they deem fit.  
 
 

 
 

FIG. 12. Adjusting interiority value to encode latent information. 
 
 
Although analyzing a CAST according to individual proper-
ties is useful, as mentioned previously, the ultimate utility of 
EDIFICE-PVR rests on a balance between analysis and syn-
thesis of properties with respect to their influence on the 
performance of complex cognitive activities. This necessi-
tates thinking about adjusting the values of a VR’s properties 
in the context of the overall structure and process of HII in 
complex cognitive activities (see Figures 1 and 2). To do so, 
one must think about the hierarchical nature of complex 
cognitive activities, and how such activities emerge over 

time through the performance of multiple actions, tasks, and 
sub-activities. Figure 13 demonstrates how continually ad-
justing values of properties from the CAST above can be 
conceptualized within the context of an action, reaction, per-
ception cycle that occurs over time while performing a com-
plex cognitive activity. Figure 13 depicts the process of an 
actor decreasing the density of a VR to identify connections 
to one particular disease factor (e.g., obesity), perceiving the 
reaction, acting upon the new state of the VR to then in-
crease the value of density and simultaneously decrease the 
value of fragmentation, perceive the reaction, and so on. As 
this process takes place, the actor performs numerous mental 
operations (e.g. induction, deduction, memory retrieval) as 
she attempts to develop an accurate mental model of the in-
formation space in order to plan and make decisions. Figure 
14 suggests that designers and evaluators can ask them-
selves, with many different VRs and at different states dur-
ing the performance of a complex cognitive activity, whether 
or not it is useful and possible for actors to adjust the values 
of certain properties to facilitate tasks.  
 

 
 

FIG. 13. Adjusting values of properties during the performance of 
an analytical reasoning activity. 

 
 

 
Discussion 

EDIFICE-PVR provides a high-level support structure 
for thinking about the quality of human-information interac-
tion during the performance of complex cognitive activities. 
However, as this a young area of research, there is further 
work to be done to more fully understand the role of VRs in 
such activities. By laying some groundwork in this area, 
EDIFICE-PVR can contextualize and orient future research. 
Indeed, conceptual frameworks, such as EDIFICE-PVR,  



 

 
 

FIG. 14. Considering the properties of EDIFICE-PVR in an integrated manner for design and evaluation. 
 
 
 

fundamentally influence research processes by determining 
what to look for, how phenomena are conceptualized, what 
their presumed relationships are, and how to make sense of 
observations and data (Becker, 1993). For instance, in the 
context of conducting empirical research, “the conceptual 
framework is both a guide and a ballast…” (Ravitch & Rig-
gan, 2011, p. xiii). Researchers have suggested that such 
frameworks are needed for empirical studies. While discuss-
ing the state of research in the information visualization 
community, for example, Chen has noted that “the lack of 
theories becomes particularly prominent…when designing 
empirical and evaluative studies” (2010, p. 396). EDIFICE-
PVR can provide a theoretical framework that facilitates the 
design of empirical studies, and determines what to look for 
and how results should be interpreted.  

Not only does EDIFICE-PVR have utility for research-
ers, but it can also serve as a useful guide for designers and 
evaluators. One of the major hurdles confronting the effec-
tive design and evaluation of CASTs is a lack of comprehen-
sive frameworks (see Chen, 2010; Sedig et al., 2013). While 
discussing the role and importance of theory in HCI, 
Kaptelinin and Nardi (2012) observe that both user studies 
and the design and evaluation of tools are rarely framed 
within a theoretical framework. Without such frameworks, 
design and evaluation of CASTs must be largely ad hoc and 
based on personal intuition. Bederson and Shneiderman 
(2003) note that theories can help not only to describe and 
explain, but also to predict performance, prescribe guidelines 
and best practices, and generate novel ideas to improve re-
search and practice. Such frameworks can help designers 



and evaluators also by simply “stabilizing terminology and 
helping designers carry on meaningful discussions.” (Beder-
son & Shneiderman, 2003, p. 350). Currently, there is no 
agreed upon terminology that designers can use to discuss 
VRs in a general manner. EDIFICE-PVR provides a set of 
terms and concepts that can be used consistently by design-
ers in numerous different contexts.  

In terms of evaluation, researchers have previously men-
tioned the need to move beyond traditional usability metrics 
and evaluation techniques to accurately analyze the interac-
tivity of CASTs (e.g., Scholtz, 2006). Part of the problem 
with traditional approaches to evaluation is an overemphasis 
on quantification, which can place too much focus on quick 
and easy measurements, but may not give much indication as 
to the overall utility of a tool in supporting complex activi-
ties (Meyer et al., 2010; Albers, 2011). The EDIFICE-PVR 
framework provides a flexible and high-level support struc-
ture for thinking about the quality of human-information 
discourse, which is based on a manageable set of criteria 
(i.e., 10 properties). The EDIFICE-PVR framework can help 
evaluators think deeply and systematically about how the 
properties of VRs influence the performance of cognitive 
activities. Although outside the scope of this paper, future 
work may build on EDIFICE-PVR to construct evaluation 
heuristics and guidelines similar to others (e.g., Nielson’s 
heuristics) that have been devised from earlier theoretical 
and empirical research.  

As a final note on the utility of EDIFICE-PVR for design 
and evaluation, it must be emphasized that EDIFICE-PVR is 
not simply a list of properties. Rather, it provides a holistic 
framework that enables systematic conceptualization of the 
performance of complex cognitive activities—especially 
when combined with other components of the EDIFICE 
framework. Such research is much needed, and is not the 
same as isolated design principles or guidelines. As Fidel has 
appositely noted, what is required for the design of tools that 
support HII is research that is “conducive to the theoretical 
developments and relevant to the design of systems that sup-
port information interaction”, and that “realizing this poten-
tial also necessitates a conceptual basis that is continuous—
rather than a fragmented puzzle of conceptual constructs—
and research strands that touch one another—rather than 
strands in isolation.” (2012, p. 255, italics added). In other 
words, the design of CASTs cannot be optimally effective if 
based on fragmented—or nonexistent—underlying theoreti-
cal models and/or frameworks. 

 
Comparison to Existing Work 

As mentioned previously, much of the existing research 
has been concerned with static VRs and/or with only low-
level perceptual and cognitive effects of VRs, and not ex-
plicitly with implications for complex cognitive activities 
(see related work section above). For instance, work by re-
searchers such as Bertin (1967), Tukey (1977), Cleveland 
and McGill (1984), Mackinlay (1986), MacEachren (1995), 
Nowell (1997), and Ware (2008, 2012) has provided us with 

valuable insights into how VRs affect simple cognition—i.e., 
low-level perceptual and cognitive processes. Such research 
is certainly important and is necessary to consider for design 
and evaluation of any CAST. However, such work does not 
necessarily describe or explain the effects of VRs on high-
level cognitive processes or even situate the low-level effects 
within the context of more complex activities, and thus can-
not provide much guidance for design and evaluation of 
CASTs for complex cognitive activities. Although many of 
the references provided in the section above that presents the 
properties are concerned with only low-level effects, unlike 
much of the aforementioned work, such is not the extent of 
concern in this article. Rather, we contend that such effects 
must be contextualized within larger models and frameworks 
pertaining to HII in complex cognitive activities. Conse-
quently, it is the emergent effects that result from the combi-
nation of such low-level effects that must be analyzed and 
studied in the context of human-information discourse dur-
ing the performance of goal-directed tasks and overall com-
plex cognitive activities.  

One research endeavor worth comparing with EDIFICE-
PVR is the Cognitive Dimensions of Notations framework 
(Green & Petre, 1996; Blackwell et al., 2001), which has 
examined some cognitive effects of notation systems and 
information artifacts. The framework is intended to help 
designers make choices where there are usability tradeoffs 
(Blackwell et al., 2001), and has been used for usability 
analysis for visual programming environments, calculators, 
spreadsheets, calendars, and other information artifacts (see 
Blackwell et al., 2001; Green & Blackwell, 1998; Green & 
Petre, 1996). While this framework is useful in certain con-
texts, it was not intended for design or evaluation of interac-
tive VRs in the context of supporting complex cognitive 
activities. It does not include any model of human-
information discourse, of the emergent nature of cognitive 
activities, of the complex structure and functioning of 
CASTs, or of the dynamic coupling that is formed between 
internal and external representations during the performance 
of cognitive activities. Certain of the cognitive dimensions 
identified in the framework (e.g., premature-commitment, 
progressive evaluation, provisionality, consistency, second-
ary notation, error-proneness, and viscosity) obviously deal 
with general usability rather than with complex cognitive 
activities. Other dimensions (e.g., visibility, abstraction, 
closeness of mapping, diffuseness, and hard mental opera-
tions) that may seem, on initial observation, to overlap the 
properties proposed by EDIFICE-PVR, are seen to be dis-
tinct after a quick examination. For instance, diffuseness may 
seem similar to our identified property of density. Diffuse-
ness is characterized as “verbosity of language” (Blackwell 
et al., 2001, p. 328) and “how much or little can be said in a 
few word or symbols.” (Blackwell, Green, & Nunn, 2000, p. 
328). The property of density proposed by EDIFICE-PVR 
refers to how compactly a VR encodes information—this 
applies to interactive animations, plots, treemaps, and any 
other type of VR. As such, its concern is different from ver-



bosity. A similar investigation of other dimensions will re-
veal the fundamental difference between the Cognitive Di-
mensions of Notations framework and EDIFICE-PVR. Fur-
thermore, an understanding of how and why the values of 
properties should be adjusted, and how such interaction fits 
into an overall process of human-information discourse and 
cognitive processing, is not under the purview of the Cogni-
tive Dimensions of Notations framework.  

Although not constituting comprehensive models or 
frameworks, it is useful to briefly comment on two oft-cited 
mantras, the first being the Information Seeking Mantra: 
“overview first, zoom and filter, details-on-demand” (Shnei-
derman, 1996), and the second being the Visual Analytics 
Mantra: “analyze first, show the important, zoom, filter and 
analyze further, details on demand” (Keim, Mansmann, 
Schneidewind, & Ziegler, 2006). While these provide useful 
high-level guidance, and may be sufficient in some contexts, 
they are not entirely sufficient to guide design and evalua-
tion of tools that provide all kinds of interactive possibilities 
and facilitate complex information-intensive tasks during the 
performance of complex cognitive activities (see Sedig & 
Parsons, 2013). Additionally, while they indirectly touch 
upon some of the properties identified in EDIFICE-PVR 
(e.g., complexity, density) they do not explicitly identify or 
characterize them, nor describe their cognitive and perceptu-
al effects. Other properties (e.g., appearance, configuration, 
dynamism, fidelity, type), which have been shown above to 
have implications for the performance of complex cognitive 
activities, are not identified directly or indirectly by the man-
tras. 

Researchers have recognized the lack of systematic and 
comprehensive research on VRs and their cognitive effects 
in general, and have suggested that much work is still re-
quired. For instance, in the context of geovisualization and 
visual analytics, Fabrikant has recently stated that “we still 
know little about the effectiveness of graphic displays for 
space-time problem solving and behavior, exploratory data 
analysis, knowledge exploration, learning, and decision-
making” (2011, p. 2009). Green and Fisher (2011) have also 
recently observed that “there is still a lack of precedent on 
how to conduct research into visually enabled reasoning. It is 
not at all clear how one might evaluate interfaces with re-
spect to their ability to scaffold higher-order cognitive 
tasks.” In other words, we still know little about designing 
interactive VRs that effectively support complex cognitive 
activities. Research has hitherto provided us with a good 
idea of how features of VRs such as color and texture affect 
perceptual tasks and low-level cognitive processes; how hu-
mans perform simple, structured tasks; and how the usability 
of artifacts is affected by certain aspects of their design. 
What is not as clear, however, is how humans process and 
work with interactive VRs to solve complex problems, make 
sense of complex information spaces, and to perform other 
complex activities, and how the interactive features of VRs 
can and should be designed to best support such activities in 
the context of an overall human-information discourse. The 

EDIFICE-PVR framework attempts to provide more clarity 
to this matter by enabling a systematic approach to research, 
design, and evaluation of CASTs.  
 
 
Summary and Future Work 

This paper is concerned with interactive computational 
tools that mediate human-information interaction to support 
complex cognitive activities. Such tools have been referred 
to in this paper as cognitive activity support tools (CASTs). 
One of the important components of CASTs is their infor-
mation interface, which is composed of visual representa-
tions (VRs). Actors perceive and work with VRs to facilitate 
their cognitive processes while engaged in sense making, 
problem solving, knowledge discovery, and other complex 
cognitive activities. In order to engage in systematic re-
search, design, and/or evaluation of CASTs, and to facilitate 
consistent and accurate communication among researchers 
and designers, the essential properties of interactive VRs that 
influence the performance of complex cognitive activities 
must be identified and explicated. This paper has presented a 
framework that identifies and characterizes ten such proper-
ties, and discusses how their values influence cognitive and 
perceptual processes during the performance of complex 
cognitive activities. These properties are: appearance, com-
plexity, configuration, density, dynamism, fidelity, fragmen-
tation, interiority, scope, and type. Not only are these proper-
ties essential (i.e., present in every instance of a VR); they 
are also relational (i.e., depend on both actors and CASTs). 
The ideal values of these properties are dependent upon the 
characteristics of actors—their strategies, goals, needs, pref-
erences, and prior knowledge and expertise—as well as the 
characteristics of CASTs and the context in which complex 
cognitive activities take place. The framework presented 
here provides a support structure to facilitate systematic 
thinking about how actors can and should be provided with 
options to adjust the values of these properties to provide 
better support for the performance of complex cognitive ac-
tivities. This paper is part of a larger research plan aimed at 
establishing a comprehensive framework for human-
information interaction in complex cognitive activities, 
named EDIFICE (Epistemology and Design of human-
InFormation Interaction in complex Cognitive activitiEs), 
and has been referred to as EDIFICE-PVR, where PVR 
stands for Properties of Visual Representations. 

EDIFICE-PVR provides opportunities for much future 
research. As discussed previously, such a high-level frame-
work can encourage further theoretical research that more 
fully describes, explains, and predicts the performance of 
complex cognitive activities through CAST-mediated HII. 
For instance, the relationship among actions, tasks, and ac-
tivities in the emergence of an overall complex cognitive 
activity requires further explication. In addition, the role of 
adjusting the values of properties in achieving goal-directed 
tasks through the performance of low-level actions is not 



completely understood. On another note, we still have a lim-
ited understanding of precisely how, when, and in what fash-
ion adjustability options should be made available for partic-
ular activities, actors, and contexts.  

EDIFICE-PVR can also stimulate empirical research, and 
can function as a lens through which studies are designed 
and interpreted. Although there is evidence to suggest how 
the values of properties affect some activities (e.g., problem 
solving), others are not as well understood (e.g., analytical 
reasoning). In addition, some properties have been more 
closely investigated than others, and by identifying these 10 
essential properties of interactive VRs, EDIFICE-PVR can 
hopefully encourage research that results in a more balanced 
understanding. Moreover, many of the studies cited here 
were not conducted in the context of today’s highly interac-
tive computational tools. Thus, while their findings are rele-
vant and applicable to the use of CASTs, further studies 
must be done to develop a better understanding of the role of 
these properties and their values in the context of performing 
complex cognitive activities with highly interactive tools. 
Furthermore, studies must be done to determine how the 
values of properties affect cognitive activities with particular 
types and characteristics of data and information, particular 
categories and techniques of VRs, particular actions and 
tasks, and actors with particular ages, skills, and levels of 
expertise. A future extension of such aforementioned re-
search is the development of comprehensive prescriptive 
frameworks and design principles and guidelines that enable 
a systematic approach to the design of CASTs. 
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Appendix 
 

TABLE A1. List of examined CASTs 

Domain  CASTs 

(Information, Data, 
Geo, Scientific) 
Visualization, Visual 
Analytics 

 Action Science Explorer (Gove et al., 2011), Carbon Calculator (http://viz-
carbontool.appspot.com), CGV (Tominski et al., 2009), ChronoZoom 
(www.chronozoomproject.org), City’O’Scope (Brodbeck & Girardin, 2003), CrimeSpotting 
(www.crimespotting.org), Cytoscape (Shannon et al., 2003), Datascape 
(www.daden.co.uk/solutions/datascape), Docuburst (Collins et al., 2009), Dust & Magnet (Yi et al., 
2005), EdgeMaps (Dörk et al., 2011), EpiNome (Livnat et al., 2010), EpiScanGis (Reinhardt et al., 
2008), Film Finder (Ahlbert & Shneiderman, 1994), Gapminder (www.gapminder.org), GeoTime 
(Eccles et al., 2008), GeoDa (Anselin et al., 2005), Gephi (Bastian et al., 2009), HARVEST (Gotz 
et al., 2010), Health Infoscape (visualization.geblogs.com/visualization/network), INSPIRE (in-
spire.pnnl.gov), Jigaw (Stasko et al., 2008), Hierarchical Clustering Explorer (Seo & Shneiderman, 
2005), Jellyfish (www.carohorn.de/jellyfish), Miner3D (www.miner3d.com), Mondrian (Theus, 
2002), Multidatex (Wu et al., 2006), NetLens (Kang et al., 2010), Newsmap (newsmap.jp), 
NFlowVis (Mansmann et al., 2009), OECD eXplorer (stats.oecd.org/OECDregionalstatistics), 
Panopticon (www.panopticon.com), PanViz (Afzal et al., 2011), Polaris (Stolte et al., 2002), 
SeeSoft (Eick et al., 1992), SocialAction (Perer & Shneiderman, 2006), Spatio-Temporal 
Epidemiological Modeller (Ford et al., 2006), Spotfire (Ahlberg, 1996), Starlight 
(starlight.pnnl.gov), Table Lens (Rao & Card, 1994), Tableau (www.tableausoftware.com), time 
rime (timerime.com), Tulip (tulip.labri.fr), TNV (Goodall, 2011), TOPCAT 
(www.starlink.ac.uk/topcat/), VisANT (Hu et al., 2009), Visible Body (www.visiblebody.com), 
VisRa (Oelke et al., 2010), Vizster (Heer & Boyd, 2005), Well-Formed Eigenfactor (well-
formed.eigenfactor.org) 
 

Cognitive, Educational, 
and Learning 
Technologies and 
Digital Games 

 Archim (www.archimy.com), Archimedean Kaleidoscope (Morey & Sedig, 2004), Cabri 
(www.cabri.com), DEMIST (Ainsworth & van Labeke, 2001), Educational Virtual Anatomy 
(Petersson et al., 2009), GeoGebra (www.geogebra.org), Geometer’s Sketchpad 
(www.dynamicgeometry.com), Hyperchem (www.hyperchem.com), Kalzium 
(edu.kde.org/applications/science/kalzium/), KAtomic (games.kde.org), Lattice Machine (Sedig et 
al., 2005), Living Liquid (Ma et al., 2012), Looking Glass (www.livinggraphs.com/enu/products/lg) 
ModellingSpace (Avouris et al., 2003), NCTM Illuminations (illuminations.nctm.org), NetLogo 
(Wilensky, 1999), PhET Simulations (phet.colorado.edu), PolygonR&D (Morey & Sedig, 2004b), 
Polyvise (Morey & Sedig, 2004a), SmartJigsaw3D (Ritter et al., 2000), Step 
(edu.kde.org/applications/science/step/), Stella (www.software3d.com/Stella.php), Sunaeon 
(www.sunaeon.com), Super Tangrams (Sedig & Klawe, 1996), TileLand (Sedig et al., 2002) 
 

Personal Information 
Management, 
Information Retrieval, 
Knowledge 
Management, Digital 
Libraries, General 
Productivity 

 ActiveGraph (Marks et al., 2005), Butterfly (Mackinlay et al., 1995), Cat-a-Cone (Hearst & Karadi, 
1997), Envision Digital Library Project (Fox et al., 1993), HotMap (Hoeber & Yang, 2006), Hunter 
Gatherer (Schraefel et al., 2002), Info Navigator (Carey et al., 2003), InfoSky (Andrews et al., 
2002), LyberWorld (Hemmje et al., 1994), Mendeley (www.mendeley.com), MemoMail (Elsweiler 
et al., 2006), Microsoft Word, Microsoft Onenote, MindJet (www.mindjet.com), MindMaple 
(www.mindmaple.com), MyLifeBits (Gemmell et al., 2002), Phlat (Cutrell et al., 2006), 
PhotoMemory (Elsweiler et al., 2005), POLESTAR (Pioch & Everett, 2006), Stuff I’ve Seen 
(Dumais et al., 2003), TRIST (Jonker et al., 2005), VICOLEX (Buchel & Sedig, 2011), VisGets 
(Dörk et al., 2009), Visual Knowledge Builder (Shipman et al., 2004), xFIND (Andrews et al., 
2001) 

 


